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Abstract-Laminar isothermal entrance flows in ducts of circular cross section with uniform rate of 
mass injection at the wall am calculated from the boundary-layer equations by an implicit finite-difference 
technique. Results are reported for systems with constant molecular weight, for injection of a light gas 
into a heavy gas, and for injection of a heavy gas into a light gas, with special emphasis on helium-nitrogen 
mixtures. Dependence of density and viscosity on composition is properly taken into account. The effect 

of molecular weight on flow development and mixing is discussed. 

NOMENCLATURE 

radius of the tube ; 
p912/po, cf. equation (7) ; 
r/u, normalized radial coordinate; 
Reynolds number based on entrance 

properties, P~~~~/cL~ = pIuOalaI ; 
velocity components in X, r directions 
normalized by uniform entrance velo- 
city, respectively ; 
---. 
pur, 

wllw,) - 1; 
molecular weight of species 1; 
molecular weight of species 2; 
x/a, normalized axial coordinate ; 
Y/R, scaled axial coordinate. 

Greek symbols 

6 mass fraction of injected species; 

I4 viscosity normalized by entrance vis- 
cosity, cf. equation (7); 

P9 mass density normalized by entrance 
mass density ; 

01, molecular diameters of species 1; 

02, molecular diameters of species 2 ; 

t This research was sponsored by the Air Force Office 
of Scientific Research, Office of Aerospace Research, 
United States Air Force, under Grant No. AF-AFOSR- 
927A-67. 

012, average molecular diameters, cf. equa- 
tion (7). 

Subscripts 

C, conditions in the coolant chamber ; 

e, conditions in the external flow ; 

W, conditions at the wall, r; = 1. 

1. INTRODUCTION 

FLOW development in ducts has been the 
subject of extensive theoretical and experimental 
study. Motivation for such work stems from 
numerous design problems that arise in chemi- 
cal engineering, in mechanical engineering, and 
more recently in aerospace applications such as 
engine inlet flow, flow in combustion chambers, 
transpiration cooling of internal flows, etc. 
The majority of the applications involve tur- 
bulent flow, but many instances arise (e.g., in 
flight at high altitudes) wherein the Reynolds 
number is low enough for laminar conditions 
to prevail The present investigation concerns 
a particular class of internal laminar flows. 

Theoretical analyses of developing flows in 
ducts are relatively difficult to perform. Unlike 
Poiseuille flow, boundary layers, lubrication 
flows, etc., developing duct flows present both 
non-linearities (due to the presence of inertial as 
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well as viscous and pressure forces) and stream- 
wise-dependent effects (e.g., an axial pressure 
gradient which is not known in advance) that 
because of the specified geometry cannot be 
simplified or removed by the usual transforma- 
tions of variables (e.g., the Levy-Lees transfor- 
mation). Thus, two types of approaches are 
available for analyzing developing internal 
flows theoretically: one is to employ approxi- 
mate techniques based on series expansions 
about known upstream and/or downstream 
conditions, based on Karman-Pohlhausen in- 
tegral-type methods, or based on various 
approximate linearizations of the conservation 
equations. The other is to employ electronic 
computers for solving finite-difference forms 
of the conservation equations. The accuracy of 
results obtained from the first type of approach 
can properly be judged only by comparison 
either with results of the second approach or 
with experiment, since numerical techniques 
are generally conceded to be the more accurate 
(and also more laborious) of the two types of 
theoretical methods. The present theoretical 
analysis employs the more accurate, finite- 
difference approach. A series expansion about 
upstream conditions is also developed, for the 
purpose of starting the finite-difference calcula- 
tion. 

With few exceptions, finite-difference calcula- 
tions of duct flows have been based on the 
boundary-layer approximation. Under most 
conditions the boundary-layer approximation 
is known to be imprecise in certain regions 
of the flow; for example, when the entrance 
velocity profile is taken to be uniform, boundary- 
layer theory yields the unacceptable result that 
the pressure gradient is infinite at the entrance 
plane of a duct. Nevertheless, heuristic justilica- 
tions exist for using boundary-layer theory in 
the down stream portion of a slender duct for 
both high and moderate Reynolds numbers, 
and it is commonly accepted that the boundary- 
layer equations describe the flow field correctly 
everywhere except in specific regions, such as 
the upstream potential core, which can be 

identified with reasonable confidence. Further- 
more, in converting the mathematical problem 
from an elliptic one to a parabolic one, the 
boundary-layer approximation introduces ap- 
preciable simplification into a finite-difference 
calculation by making it possible to begin at the 
entrance to the duct and to calculate the solution 
by marching downstream. The boundary-layer 
equations are employed in the present theory. 

Hornbeck [l] calculated the imcompressible 
flow field in a pipe of circular cross section, 
with constant density and viscosity, for the case 
in which the inlet velocity profile was uniform. 
He employed a backward difference scheme that 
involved solving a set of linear algebraic 
equations at each axial step in the mesh Later, 
Hornbeck, Rouleau and Osterle [2] extended 
this method by calculating some flows with 
uniform and nonuniform rates of injection and 
suction at the wall, for cases with both parabolic 
and uniform initial velocity profiles. In the 
present study, the species conservation equation 
is appended to the set of conservation equations 
used in [ 1,2], variations of density and viscosity 
due to concentration variations in isothermal, 
incompressible flows are properly taken into 
account, and an implicit iterative scheme for 
solving the finite-difference equations at each 
axial step is used for calculating entrance flows 
in circular ducts with uniform rates of mass 
injection of a foreign gas at the wall, for the 
case in which the inlet velocity profile is uniform. 

The interest in wall injection of foreign gases 
stems from their effects on mass and momentum 
transport processes which in turn may affect 
the characteristics and the length of the flow 
development zone. For example, injection of a 
light gas into a flat-plate boundary layer is 
known to modify the wall shear and mass 
transfer coefficient appreciably; boundary-layer 
profiles with inflection points can develop 
for injection on a flat plate; it is of interest to 
investigate whether a similar phenomenon can 
occur in ducts. Extensions of the present calcula- 
tions to nonisothermal systems can reveal the 
effect of the molecular weight of the injected 
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species on the heat protection afforded the 
wall by injection. 

2. ANALYSIS 

The flow under consideration is shown 
schematically in Fig. 1. A porous cylindrical 

( A- 

( ),A )*’ 

FIG. 1. Schematic representation of the flow. 

tube is closed at one end by a porous disc. Each 
porous surface is jacketed so as to permit the 
injection of gases and gas mixtures through 
them We consider the case wherein a pure gas 
denoted by a subscript 1 is injected through the 
porous disc and wherein a second gas denoted 
with a subscript 2, perhaps in a mixture of 
gas 1, is injected through the cylindrical surface. 
Although our numerical work will assume 
uniform mass transfer through both surfaces, 
the analysis and numerical techniques are 
sutliciently general so that arbitrarily dis- 
tributed mass transfer through the cylindrical 
surface may be treated. Of course in this case 
the porosity of the cylinder must be assumed 
variable in the streamwise direction. We shall 
assume that the entire system is isothermal and 
low speed; thus the gas density will depend only 
on composition. 

2.1 Describing equations 
The describing equations in nondimensional 

form are 

where the symbols are defined in the Nomen- 
clature; for clarity we repeat here that R = 
p,,u,a/p,, a Reynolds number defined in terms 
oftheflowattheplanex-X =O;that~Y= 
p91z/~o, a diffusion parameter; and that rc 
is the mass fraction of gas 2 injected through 
the cylindrical surface. We note that the assump- 
tions of only gas 1 being injected through the 
disc and of isothermal conditions imply that 
the reference quantities pO, p. may be replaced 
by pl, pl, respectively. However, to provide for 
more general cases we retain the more general 
reference quantities. 

The boundary and initial conditions to be 
imposed on equations (1)+4) are 

ii(O,F)=l, rc1; 30)=1 

ii(Z, 1) = 0; (PC) (Z, 1) = (pu),, given; (5) 

&c/S (Z, 0) = (R/d) (~Z&,(IC, - K,). 

In addition certain regularity conditions at 
f = 0, i.e., at the axis of symmetry must be 
imposed, leading to 

lii (l/f) (a/C%) [-?(&/a?)] = 2~(a~i+?r~) Ii = 

pz (l/F) (a/aq [JG(aK/aP)] (6) 
= 2”M(&C/ar2)1, = o 

l+m-l(l/r)(&c/~~) = (&c/C?i’2)(i=o 

Although the initial conditions stated above 
are sufficient in principle, the imposition of the 
step condition on ii at E = 0 as f + 1 suggests 
that a special analytic treatment of the initial 
data is required. Accordingly, in the Appendix 
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we present an analysis which provides initial 
data at a finite, small value of X and which 
should be considered an extension to injection, 
either homogeneous or heterogeneous, of the 
analysis of Atkinson and Goldstein [S]. This, 
in fact, has been used in the numerical work 
below. 

The last of equations (5) derives from con- 
servation of gas 2 between the exposed surface 
f = 1 and a surface within the jacket surround- 
ing the cylinder; note in this equation that K~ 
is the mass fraction of species 2 in this jacket. 
If K~ = 0, then we are treating a homogeneous 
case, only gas 1 being injected through the disc 
and cylinder. 

2,2 The transport properties 
We use for the description of the transport 

properties the following semi-empirical equa- 
tions [3] which prevail for our isothermal flow : 

ii E p/p,, = (1 + 1.385(w, + 1) [x/(1 - JC,’ 

x (1 + w>l w4- l + (PzlPo) 
x { 1 + 1.385 WPJ CC1 - W41 + xw,,l 
x u/4>-’ 

> (7) 

x UK + w/2Klt 
P~/P~ = 4l&WKY 
w/w, = (icW1 + 1)-i 

a 12 = (ai + a2P. J 

Thus we see that the transport properties are 
determined to the approximations employed 
here by the molecular diameters and molecular 
weights ai, I+$ respectively. For the calculations 
presented below the binary system of nitrogen 
and helium is considered ; we have used the 
molecular and transport data given in Table 1. 

Table 1 

He N* 

W(g/mole) 4 28 

d /cm s) 
x 

1981 1786 

ti0 190 3.36 
_- 

2.3 The equation of state 
Consistent with the assumptions of isothermal 

and low-speed flow, the equations of state yield 

p E #D/p0 = (KWi + 1)-l. (8) 

In the course of the development below we shall 
need 

ajiiajs = -p2Wl(aKpz). (9) 

2.4 Rearrangement qf equations 
We next rearrange equations (1)<4) so as to 

put them in a form suitable for numerical treat- 
ment : our basic approach is to determine (&i/Z) 
and (arc/&) in terms of the dynamic and state 
variables at a given station, and to use them to 
make estimates of ii and IC at an advanced station. 
From these the &velocity is estimated at the 
advanced station and we are in position to refine 
our calculations by iteration, i.e., to calculate 
more accurately ii, K and fi at the advanced 
station. 

From equations (3) (4) and (9) it is easy to 
show that 

aii i av 
22 = -x-T+ 9 

pr ar ( )L 
;g 

-j&i A$ ( )I , (10) 
g= - p(E) -g (Ai!#zi)-? (11) 

Now if equation (1) is differentiated with respect 
to ? so as to eliminate p, if equation (10) is also 
differentiated with respect to F, and if (a%/ 
&S) is eliminated between the two resulting 
equations, there is obtained 

aVjar2 + [w,p(aKjaf) - ipjav/ar 
+ [w,,?lii(au/ar)(aqar) - w,ppfaqai;) 
- w:p2(a7qaiy + w,p(a3qai;2) 
+ i/iiqaiijaq - i/qa%/ar2)]v 
= {w,pp/qaiipr) - wljqaqaq - i/f]. 
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- a/ar[&(aK/a~)] + wlp(a2/ar2)[de(aK/ar;)] 
+ l/iiF(a/aF)[z(aii/~F) 

- l/ii(az/ar2)[~r(ai/~~)]}R - I. (12) 

We consider equations (10)-(12) to provide 
the basis for numerical analysis; symbolically 
we have 

aiqaz = G(lc, V) 

ale/ax = H(i& lc, V) 

a2vp + ~(ii, K)av/aF + ~(u, K)V 

There are several ways in which 

(104 

(114 
= N(ii, K). 

uw 
this set of 

equations can be handled numerically ; we 
have used a higher order implicit scheme based 
on iteration. The k-th iterate for ii, and K at a 
value of X and f identified by the indices n, m 
are given by 

(k+-pm = p-1.m + (Gn-1-m 

+ 'k-l&",'")(1/2)(y _ g"-I) 

(k)p.m = fl-1.” + (fp-1,m 

+ (k- “H”,“) (l/2) (2” _ _y- 1). 

The F-derivatives appearing in G and H are 
approximated by finite differences with a uni- 
form grid of spacing 6,; the first approximations 
to G”,“, H”,“, i.e., the approximations used for 
k = 1, are the values at the previous station ; 
more precisely, we take (‘)G”*” = G”- lvm, 
(e)H”,m = H”-‘5’“. Equation (12a), put in finite 
difference form results in a tridiagonal matrix 
whose solution by a standard algorithm yields 
the k-th iterate for the V’s at the station identified 
by the index n. Again the F-derivatives appearing 
in L, M, N are approximated by finite differences. 

To give some indication of the difference 
representations used we write two typical cases 
below : 

= _& (~jyb~+1/2(K4m+l _ Kn,m) ( >[ I 
1 

_ (,jym-W(~,m _ Kn-l )I? 
a2 __aii n,m [( > 

J 

p P”lg 

1 _: aii 

O[ 

n,m+l 

=j$ PL’-& -2 pi$ 
( > 

n,m 

afi n,m-1 

+ jif& 

( > 

= & [(ppm+l (pm+2 _ ipm~ 

I 

_ qj-jj.pm(fi~.m+I _ p,m-I) 

+ fjgym-1 (p. m _ pm-211 

where ( )n,m+1/2 = (1/2)[( )n*m+l + ( )nvm]. 
To implement this computing scheme there 

must be solved the usual problems of special 
finite difference forms for the grid points near 
the boundaries; of the determination of the 
Z-wise step size; and of the number of iterations 
to be undertaken. The first mentioned problem 
is straightforward; the latter two are discussed 
below. 

2.5 Determination of the pressure 
Once the velocity and composition fields are 

determined the pressure distribution jj = j(X) 
may be computed in several ways; we have used 
equation (1) evaluated at the wall of the tube. In 
nondimensional form this leads to 

ap 
ax 

_v E 
0 w ai: i=i 

1 a__ aii -- - 
R a?’ s [ 01 (13) 

I= 1 

If p = j(Z) is desired, equation (13) may be 
integrated with the initial condition p(O) = 1. 

2.6 The asymptotic behaviourfor the homogeneous 
case 

In making comparison of our calculations with 
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previous results for the homogeneous case it 
willbeconvenienttoconsiderthefar-downstream 
behaviour. Yuan [4] has shown that the velocity 
prufile in the region remote from the entrance 
is given by 

ii/ii, = cos (79/2) (14) 

where ir, = ii(?,O), the normalized centerline 
velocity_ Equation (14) will also apply for the 
nonhomogeneo~ case when the distance down- 
stream is suffciently large for the concentration 
of species 1 to be negligibly small. 

Except for the region close to the origin S = 0 
where a fine mesh was required as described in 
the Appendix, all the results presented below, 
were obtained with a uniform mesh size in the 
? direction such that S, = l/80 and l/20; the 
(lj40) value was found to provide accurate 
results without excessive computing time. We 
note that ~3~ = l/40 is approximately equal to the 
smallest mesh size that was found to be needed 
in [l] and [2] for assuring accuracy near the 
inlet and near the wall. The step size in the% - 
direction was variable in our program and self- 
determined as an integral part of the iteration 
scheme. Assume that a satisfactory A* has been 
found and the solution determined at a certain 
station .? = -u, ; then to advance a step twice as 
large is attempted, and two iterations performed. 
Then the difference between (G/dX~~ and 
‘2)(&j&r+ l*J= is computed for all m ; the A, is 
considered satisfactory if this difference, which 
is a measure of (82ii/3X2), is such that the third ---. 
term in the Taylor series expansion of u(x, r) IS 
10 per cent or less of the second term. If that 
A, is found ~~tisfa~o~ according to that 
criterion, the A, is halved, and the computation 
repeated until a satisfactory Ar is found. With A, 
determined the iterations proceed until two 
successive sets of I/“%” values agreed with O-1 per 
cent. 

3. RESULTS AND DiSCUSSION 

We have defined variables in such a way that 

when molecular weights and transport properties 
are given, two nondimensional dynamical para- 
meters remain in the problems, the initial 
Reynolds number R and the ~o~dimens~onal 
wall injection velocity V, = (@) . It is easy to 
see from the describing equationpthat R can be 
absorbed as a scale factor in .% (viz., .? z 2 /R), 
in such a way that only one parameter RV, 
remains in the problem after molecular weights 
and transport parameters have been specified. 
To achieve the greatest generality in presenting 
results, we shall therefore usually employ the 
modified axial coordinate F/R, and we shall 
specify RV,, instead of V, To check our calcula- 
tion against previously reported results, corn- 
putations were performed for constant-property 
systems IC, = 0 for RVw = -5, a case studied by 
Hombeck et al. [2]. The present results agreed 
with those of Hombeck et al. within the accuracy 
to which the curves published in [2] can be read, 

~ompu~~ons were also performed with 
Rf/, = -675 corresponding to R = 582, V, = 
- 0,116, in order to compare with experimental 
hot-wire results for velocities obtained by 
Aiharat for the air-to-air case The comparison 
between theory and experiment, shown in 
Fig. 2 is seen to be good. As may be inferred from 
the linearity of the computed curves for 2 2 O-02 
it is seen that most of the experimental points are 
in the downstream asymptotic region, where 
Yuan’s [4] similarity theory is applicable and 
where the velocity profile obeys a cosine-squared 
law. 

The remaining results to be considered in this 
paper are for injection of nitrogen into helium 
(case A) and for injection of helium into nitrogen 
(case B), in isothermal systems at 25°C. Air 
differs ne~~g~bly from nitrogen For these calcu- 
lations, and therefore the results also appiy 
to helium-air systems. The differences we have 
observed between injection of a light gas and 
injection of a heavy gas can be understood in 

“r The& experiments were performed at UCSD with 
with a porous tube, 30 in. Iong and 3 in. dia., as part of the 
present investigation, The authors are indebted to Dr. 
Aihara for making his results available to them. 
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1 
RV,=-67.5 

0 7 zO.6 Experiment 
Ai.O.8 

FIG. 2. The comparison of the development of velocity with 
experiment for homogeneous injection. 
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FIG. 3. The development of the concentration profile for heterogeneous injection. 

terms of the concentration profiles shown in 
Fig. 3. Comparison of the concentration profiles 
for case A (with RI’,‘, = - 1) with the correspond- 
profiles for case B clearly shows that when a 
light gas is injected, the concentration is con- 
siderably more uniform (at a given mass rate 
of injection) than when a heavy gas is injected. 
A light injected gas apparently can diffuse into the 
main stream appreciably more rapidly (in 
comparison with its rate of injection) than a 
heavy injected gas. In the case RI/, = - 1, when 
the light gas is injected it diffuses sufficiently 
rapidly to the centerline for the centerline 
concentration of injectant to reach 1 per cent at 
Z/R x 4 x 10m2, but when the heavy gas is 
injected the centerline concentration of injectant 
does not reach 1 per cent Z/R x 1.5 x lo- ‘. 

G 

e 

C :ose B:f?V, =-I 

$ =0.130072 ._ 
\ 

Ii ‘_ 
z =0.0698837.. 

’ 
. \ \ 

. . 
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An inflection point appears much sooner in the 
concentration profile when a heavy gas is 
injected (inflection appears at X/R x lo- ’ for 
injection of heavy gas and at F/R w 3 x lo- ’ for 
injection of light gas in the case considered). 
The tendency to a greater degree of stratification 
with a heavier injectant will be seen later to 
possess a number of implications concerning 
velocity and pressure profiles. 

The curves shown in Fig. 3 for case A with three 
different values of R&, clearly show that as the 
injection rate increases, concentration nonuni- 
formitiesincrease. The effect is quite pronounced : 
For RT/, = -10-l the composition is seen to 
be practically uniform across the entire cross 

section of the tube, at all values of Z/R except 
the smallest (very near the entrance of the duct, 
a pocket of injectant with very small but measur- 
able concentration exists next to the wall while 
the injectant concentration in the centre of the 
duct is still negligibly small). On the other hand, 
for RI/, = -10, the flow remains highly strati- 
fied for an appreciable distance from the entrance 
to the duct; at Z/R = 10e2, the injectant has not 
yet penetrated to any significant extent to i; = 
0.85 and the wall concentration of injectant is 
approximately 0.6, and at 3/R = 10-l the wall 
concentration of injectant is nearly unity while 
the centerline concentration is still practically 

Case A:li’I/=-I Case A:&=-10 

6 / $- =0.618715 +=0,79492 
/ 

6 

6 

FIG. 4. The development of the velocity profiles for heterogeneous injection. 
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with increasing injection rate is qualitatively 
as might be expected on physical grounds ; 
at higher injection rates there is less time available 
for diffusion to smooth out the concentration 
field, and this causes an increase in the ratio of 
radial convective mass flux of injectant to 
diffusive mass flux of injectant. 

Velocity profiles are shown in Fig. 4 for the 
same four cases that were shown in Fig. 2. 
The velocity profiles for case A with RT/, = 
- 10-l differ very little from constant-property 
velocity profiles at the same value of RT/, 
At these small injection rates, the injectant 
diffuses across the duct sufficiently rapidly for 
composition to remain practically uniform, and 
the only important effect of the molecular 
weight of the injectant is a gradual increase (or 
decrease in the case of light gas injection) in the 
mean density of the fluid ; the development length 
is not modified appreciably, although after fluid 
dynamic development is completed, the average 
density continues to increase gradually until 
it asymptotically approaches the density of the 
injectant, with a distance X = -50/T/, being 
required for the change in density to reach 99 per 
cent completion. 

Comparison of the velocity profiles for case 
A with different values of RV, shows that as the 
injection rate increases, the peak velocity at a 
given value of ji increases, a result which is 
expected from mass conservation. However, 
the velocity profiles vary appreciably as RVw 
changes. Moreover, the velocity profiles for case 
A with RI/, = - 1 differ appreciably from those 
for case B with RI/, = - 1. These differences 
become much less pronounced if (pii) profiles are 
plotted instead of E profiles. Thus, the peak 
velocity at a given value of X is larger in case B 
with RV’, = - 1 than in case A with RV, = - 1, 
but the centerline density is lower in case B, 
so that the peak values of (pii) differ little. Further, 
the U profiles are broader in case B than in case A, 
but @/la? is positive in case A and negative in 
case B, so that the breadths of the DE profiles 
differ little. One interesting aspect in the pii 
profile is the existence of a maximum and an 

inflection point in the central part of the tube 
but removed from the axis (see Fig. 5). This 

20- 

-____ ” 

- ii2 

FIG. 5. The profiles of velocity, momentum and energy at 
various stations for case A, RV, = - 10. 

behaviour is again traceable to the effect of 
density variations. The profile which differs 
perhaps the least from the corresponding con- 
stant-property profile is that for momentum 
flux (/ziZ). 

The pressure gradients for the various cases 
considered are shown in Fig 6. The qualitative 
shapes of the curves in Fig 6 are consistent with 
previous studies; dp/dx is always negative, it is 
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FIG. 6. The development of the pressure gradient. 
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FIG. 7. The development of the shear stress. 
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large in magnitude near the entrance (approach- 
ing infinity as E + 0), its magnitude decreases 
reaching a minimum at some value of X , and 
then its magnitude increases eventually ap- 
proaching a straight line the slope of which 
increases with increased values of - RVw and is 
given by the asymptotic similarity solution of 
Yuan [4]. The curves in Fig. 6 show an appreci- 
able variation from one set of conditions to 
another. The variation with RVw is similar to that 
found earlier [2] for constant-property systems. 
However, the large differences between the curves 
for light and heavy gas injection cannot be in- 
ferred from constant-property results. Pressure 
gradients are appreciably larger for light gas in- 
jection than for heavy gas injection at the same 
rate (massfi). This result is consistent with our 
observation that the pi? profiles are not affected 
greatly by the molecular weight of the injectant. 
The viscosity and velocity gradient at the wall are 
both influenced appreciably by the molecular 
weight of the injectant. Hence, the wall shear 
depends on the molecular weight of the injectant. 
Since the momentum flux profiles (pi?“) do not 
change greatly, the change in wall shear must 
make itself felt through the axial pressure 
gradient in order to conserve momentum. In 
Fig. 7 we show the distribution of a parameter, 
~(&/a?) at f = 1, which provides a measure of 
the wall shear. We note that the comparison 
of Figs. 6 and 7 supports this interpretation ; 
injection of a light gas increases the magnitude 
of the axial pressure gradient and increases the 
magnitude of the wall shear in a developing 
flow. The opposite effect is produced by the 
same mass rate of injection of a heavy gas. It is 
interesting to note that these effects are pre- 
cisely the opposite of what is found to occur for 
injection into a flat-plate boundary layer. 
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APPENDIX 

For the initial data of interest in the present 
problem, corresponding as it does to the flow 
through a porous disc closing the tube, we 
effectively have a boundary layer developing on 
the wall of the tube with an origin at z? = 0, 
i; = 1. To provide initial data appropriate for 
our downstream marching technique we extend 
the Atkinson-Goldstein [5] analysis for the 
inlet flow to a tube to the case of mass transfer, 
both homogeneous and heterogeneous. 

The solution near the tube entry is obtained by 
starting from the equation of motion [equation 
(111 

_ 2.5 &! 
a~ ( > ay ’ 

from the equation of continuity [equation (3)] 

(a/a?) (Dti) + (qgy) (j%) = 0 

and from the equation of species conservation 
[equation (4)] 

i%(&+l) + /?i@rc/ay) 

= vaY[~(‘(a@Y)l - w~YC~Y@~/~Y~l~ 

where 

y = l/2(1 - r2) 

1= Z/R 

ii = -RiF. 

Using the transformations 

x” 

s = 
d 

u,dx, 

q = u,(2s)- 1’2 i p dy’, 
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and 

where 

Pi = WY[J(2dfl 

pa= - a/iqJQs)f] 

c = gii 

p(s) = (2&J du,/ds). 

The boundary conditions become 
s 

ffs, 0) = - l/j!(2s) 
s 

p ds, 

0 e 

Generalizing the method of Atkinson and 
Goldstein [5] to flows of binary gas mixtures 
with wall injection we consider a series expan- 
sion 

and couple the external flow to the boundary 
layer by applying conservation of mass at each 
station 1; thus we have 

U, = 1 + 2,&s) $ (1 - f;) d? 

+ 2s [(pi% + 2 [ (~1~1 - f;)drl + . . . 

- [i (1 - fb) dd;l”t. 

Substituting into the full equations and equating 
coeflicients of powers of J(2s) yields the follow- 
ing equations for the f Is and rci : 
.fb” + .f&G = 0, 

4(O) = - SC, ,fi%& 
Ic,(co) = 0 

It is seen that fO is the well-known Blasius 
function and that succeeding equations are 
linear. The two-point boundary-value problems 
for x1 and fr can therefore be reduced to one- 
point ~~da~-val~ problems. The ordinary 
differential equations so reduced were solved 
numerically by a forward integration routine. 
The solutions for fi and rci depend on the flow 
parameters (p y’) and xE and on the gas properties 

in AD, SC,,, and ~~c~~~)~ +, and they provide 
velocity and conce~~ati~n profiles in the boun- 
dary layer that develop on the wall near the 
entrance of the duct. 
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We are interested not only in the profiles which 
provide the initial data for the numerical solution 
but in the velocity in the core, u,; this can be 
expanded as 

u, = 1 + c,(Z) U2 + c,z + . . . 

where 

c1 = 2J2 4 (1 - f;) dq = 3441576 
0 

~2 = 41~17 ~1 drl - fi(oo) 
0 

+ 2/3 [$ (1 - fbwI12). 

The coefficients c1 and c2 correspond to the 
constants rcl and ICY of [S]. The value of c1 is of 
course numerically equal to ICY, but the values 
of c2 differ from x2 = -9=0938 because of 
injection. Values of c2 for various cases are given 
in Table A. 1. We remark that numbers shown for 
light gas injection with ($),,, = -0-l may not be 
physically meaningful because the boundary- 
layer approximation may break down. 

Now the value of 2 at which the numerical 
solution is started must be determined by the 
requirement that Jcz(Xi)“‘l + 1~~1. Typically 
gi = o(lO-‘) and a fine radial mesh correspond- 
ing to 6, = l/200 had to be used in order to 
obtain adequate resolution of the initial data.. 
Asthenumericalsolutionproceededdownstream 
grid points were dropped until the standard 
mesh of & = l/40 quoted above could be 
employed. 

Table A.1 

(P&J 
for c z 

R = 100 

28 4 -10 -0.1 - 49.22 
28 4 -1 -001 - 1254 
28 4 -0.1 -0.001 -6357 
28 28 -5 -005 1704 
4 28 - 10 -0.1 1899 
4 28 -1 -001 9.102 
4 28 -0.1 -0001 -9ilo3 

R&an&&s tiulements laminaires isothermes B I’entr6e de tuyaux de section droite circulaire avec une 
vitesse uniforme d’injection massique ?I la paroi sont calculb A partir des Cquations de la couche limite par 
une technique de diffkrences finies implicites. 

On d&it 1~s reSultats pour des syst&mes avec un poids mol&culaire constant, pour l’injection d’un 
gaz 16ger dans un gaz lourd, et pour l’injection d’un gaz lourd dans un gas lbger, en insistant sp6cialement 
sur les mtlanges htlium-azote. On tient compte convenablement de la dtpendance de la masse volumique 
et de la viscositi enfonction de la composition. L’effet du poids mol6culaire sur l’btablissement de l’&zoule- 

ment et sur le mklange est discutt. 

ZllrlammenfPsgamg-Laminare, isotherme Einlaufstriimungen in Kanalen von kreisfiiraigen Querschnitt 
mit gleichfiirmiger Stoffzugabe an der Wand werden mit Grenzschichtgleichungen nach einem impliziten 
endlichen Differknzenverfahren berechnet. Ergebnisse werden angegeben filr Systeme mit konstantem 
Molekulargewicht, filr die Zugabe eines leichten Gases in ein schweres und fiir die Zugabe eines schweren 
in ein leichtes Gas mit einem Schwerpunkt auf Helium-Stickstoffgemischen. 

Die Abhlngigkeit der Dichte und Zlhigkeit von der Zusammensetzung wird genau beriicksichtigt. 
Der Einfluss des Molekulargewichts auf die Striimung und Vermischung wird diskutiert. 

AEHOTsqHsI-PaCCsKTbIsaeTcR JILUiIIHapHOe I430TePMAYWKOe TE!'IeHHe BO BXOAHOM J'WCTKe 

KaHaJlOB KpylYIOrO IIOIIepeYHOrO CeqeHIlFI IIpti PaBHOMepHOM BRYBI? Ha CTeHKB. YpaBHeHIlR 

nO,'paHWIHOrO CJIOR PeluaJIHCb IIpH IIOMO~H HWBHOti KOHeYHO-P33HOCTHOti CXeMbI. ripen-- 

CTaBneHbIpe3ynbTaTblHnRCllCTeM C IIOCTORHHbIM MOJIeKJ'JIHpHbIM BeCOM,npllBAyBenerKOrO 

ra3a n TfimenbrZt ra3 II TRxenoro ra3a B nerIcHtt. OcoBoe BHnhraHLie yAeJrHeTcR ChxecRM renmft-’ 
330T. YYMTbIBaeTCR 33BACKMOCTb IIJIOTHOCTA II BfiIBKOCTH OT COCTaBa r'838. P3CCMaTpHBaeTCf-l 

BJlARHMe MOJIeKJ'JlHpHOl'O BeCa Ha p33RATEle IlOl'OKa M CMeLUABElHIJt'. 


